Neurobiology of Disease Licofelone Modulates Neuroinflammation and Attenuates Mechanical Hypersensitivity in the Chronic Phase of Spinal Cord Injury

نویسندگان

  • Jennifer N. Dulin
  • Edward D. Karoly
  • Ying Wang
  • Henry W. Strobel
  • Raymond J. Grill
چکیده

Inflammation is a major factor shaping outcome during the early, acute phase of traumatic spinal cord injury (SCI). It is known that pro-inflammatory signaling within the injured spinal cord drives pathological alterations in neurosensory processing and shapes functional outcome early after injury. However, it is unclear whether inflammation persists into the chronic phase of injury or shapes sensory processing long after injury. To investigate these possibilities, we have performed biochemical and behavioral assessments 9 months after moderate thoracic spinal contusion injury in the rat. We have found that levels of the pro-inflammatory lipid mediators leukotriene B4 and prostaglandin E2 are elevated in the chronic spinal cord lesion site. Additionally, using metabolomic profiling, we have detected elevated levels of pro-oxidative and inflammatory metabolites, along with alterations in multiple biological pathways within the chronic lesion site. We found that 28 d treatment of chronically injured rats with the dual COX/5-LOX inhibitor licofelone elevated levels of endogenous anti-oxidant and anti-inflammatory metabolites within the lesion site. Furthermore, licofelone treatment reduced hypersensitivity of hindpaws to mechanical, but not thermal, stimulation, indicating that mechanical sensitivity is modulated by proinflammatory signaling in the chronic phase of injury. Together, these findings provide novel evidence of inflammation and oxidative stress within spinal cord tissue far into the chronic phase of SCI, and demonstrate a role for inflammatory modulation of mechanical sensitivity in the chronic phase of injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P116: The Relationship between Spinal Cord Injury and Neuroinflammation and Treatment Methods

Spinal cord injury (SCI) is usually caused by a physical factor, especially like burst fracture. Its primary phase involves displacement and physical accidents for the spinal cord, which have two factors of depth and speed of impact. In this phase, most damaged cells are oligodendrocytes in white matter. The secondary phase involves a cascade of cellular and molecular events that progresses rap...

متن کامل

Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury

Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...

متن کامل

Paroxetine Attenuates the Development and Existing Pain in a Rat Model of Neurophatic Pain

Background: P2X4 receptor (P2X4R), a purinoceptor expressed in activated spinal microglia, plays a key role in the pathogenesis of neuropathic pain. Spinal nerve injury induces up-regulation of P2X4R on activated microglia in the spinal cord, and blockade of this receptor can reduce neuropathic pain. The present study was undertaken to determine whether paroxetine, an inhibitor of P2X4R, could ...

متن کامل

P 116: The Effect of Galectin-3 and Lanthionine Ketimine Ester in Neural Recovery after Spinal Cord Injury

Spinal cord injury (SCI) is a trauma that disturbs motor, sensitive and autonomic function and directly impacts the quality of life. After physical damage, releasing of pro-inflammatory proteins and cytokines occurs and with collaboration of immune system cells, an immune response begins in the brain tissue. The result of neuroinflammation is edema, apoptosis and release of axonal growth inhibi...

متن کامل

8-OH-DPAT (5-HT1A agonist) Attenuates 6-Hydroxy- dopamine-induced catalepsy and Modulates Inflammatory Cytokines in Rats

  Objective(s): Neuroinflammation in Parkinson disease (PD) is associated with glial cells activation and production of different inflammatory cytokines. In this study, we investigated the effect of chronic administration of 8-OH-DPAT on 6-OHDA-induced catalepsy and levels of inflammatory cytokines in cerebrospinal fluid (CSF).   Materials and Methods: Catalepsy was induced by un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012